前言 因為寫文章時常會要記錄一些數學公式,為了公式的美觀則需使用LaTeX語法。以下逐漸積累一些自己常用的LaTeX語法。 希臘字母 \beta = \gamma = \mu = \phi = \rho = \lambda = 字母上下標 上標: a^{1} = ...
線性轉移的組合 Def: if :U->V, :V->W are linear transformation, then composition of T2 with T1, denoted by o, is the function defined by (o)(u) = ((u)). ...
Linear Transformation(線性轉移) Def: let V and W be vector space(over F). A function T: V -> W is called a linear transformation from V to W if for all x,...
Random Variable(隨機變數) 定義: 給定樣本空間(S,F),如果其上的實值函數X:S->R 是 F(實值)可測函數,則稱X為(實值)隨機變數。 隨機變數是一種關於樣本空間的函數 Cumulative Distribution Function(累積分佈函數) 機率...
行列式的一些性質 If A is an n-by-n matrix, then det(k·A) = k^n · det(A) 因為k對A的影響體現在每次降階中,一共n次降階帶來n個k相乘的影響。 det(A+B) ≠ det(A) + det(B) 但在特殊情況下會成立:矩陣AB僅僅在某一row或c...
Theorem: 倘若方陣有一row或一column全為0,則該方陣的行列式為0 Let A be a square matrix , if A has a row of zeros or a column of zeros, then det(A) = 0 對全是0的row或column使用co...
Determinant(行列式) 低階數矩陣的行列式計算 這邊三階行列式公式用降階的方法得到。 Minor and Cofactor if A is a square matrix, then the minor(子式) of entry aij, denoted by Mij, is def...
Conditional Probability(條件機率) Def: In probability theory, conditional probability is a measure of the probability of an event occurring, given that anoth...
前言 本篇關於對角線矩陣、三角形矩陣、對稱矩陣的定義及他們的性質。這三種矩陣都是建立在方陣的前提下,是方陣的一種特殊形式。 Diagonal matrix(對角線矩陣) Def: A square matrix D is called a diagonal matrix if Dij = 0 for ...
前言 本篇補充關於方陣的兩個定理及證明 關於方陣的一個重要定理 If A is an n-by-n matrix, then A is invertible if and only if AX= b has exactly one solution. A^-1 · b for every n-by-1 ...