Different tasks of GraphML
- Node classification: Predict a property of a node.(e.g. Categorize online users)
- Link prediction: Predict whether there are missing links between two nodes.(e.g. Kownledge graph completion)
- Graph classification: Categorize different graphs(e.g. Molecule property prediction)
- Clustering(Community): Detect if nodes form a community(e.g. Social circle detection)
- Graph generation(e.g. Drug discovery)
- Graph evolution(e.g. Physical simulation)
Applications
Node level:
Protein Folding: 憑藉氨基酸序列預測蛋白質的3D結構。
Edge level:
Recommender system(推薦系統):
讓推薦關聯性更高的事物在embedding後的距離更接近。
Drug Side Effects(藥物副作用預測):
以藥物和蛋白質聯繫建構如圖graph後對兩種藥物之間的未知link做預測。
Subgraph level:
Traffic Prediction(交通通行時間預測)
以路段作為節點,以路段之間的連通情況作為edge構建graph,將graph輸入GNN以預測通行時間。
Graph level:
Drug Discovery
以原子為node,化學鍵為edge構建graph輸入深度學習模型中預測有效的抗生素分子式。
參考
- StandFord CS224W http://web.stanford.edu/class/cs224w/