線性轉移的組合
Def:
if
:U->V, :V->W are linear transformation, then composition of T2 with T1, denoted by o , is the function defined by ( o )(u) = ( (u)). 類似復合函數的定義
Theorem: 線性轉移的復合依然線性
If
, are linear, then ( is a linear transformation.
Proof:
證明
o : U->W , ∀x, y ∈ U, c ∈ F
o (cx+y) =
( (cx+y)) ---by def =
(c* (x) + (y)) ---by properties of linear =
(c* (x)) + ( (y)) ---by properties of linear = c*
o (x) + o (y) --- dy def
Note:線性轉移與基底轉移與標準矩陣
is linear , , are ordered standard bases for and , respectively. Then,
, by theorem, we have:
,here,
is called the standard matrix of T.
線性轉移必可用矩陣乘法表達,線性轉移又是基底的轉移,一個原本的標準基底經過轉移成為一個新的column vector,這些column vector堆砌成
,即線性轉移的矩陣化表達(線性轉移的標準矩陣)。
Theorem: 由標準基底向任意基底推廣的線性轉移的矩陣化定理
Let:
be linear and , be ordered bases(not only the standard bases) for and , repectively. Then
is a m-by-n matrix such that where