前言
本篇關於對角線矩陣、三角形矩陣、對稱矩陣的定義及他們的性質。這三種矩陣都是建立在方陣的前提下,是方陣的一種特殊形式。
Diagonal matrix(對角線矩陣)
Def:
A square matrix D is called a diagonal matrix if Dij = 0 for all i≠j.
除了對角線上,其他元素都為0的方陣叫做對角線矩陣。
Properties of Diagonal matrix:
對角線矩陣做n次冪運算的結果,為對角線上元素分別做n次冪運算,其他位置元素依舊為0.
對角線矩陣的可逆判斷條件:A n-by-n diagonal matrix D is invertible if and only if Dii≠0 for all 1<= i <=n. 對角線上元素全部不為0時,對角線矩陣可逆。對角線可逆則其對角線元素全部不為0.
Triangular matrix(三角形矩陣)
Def:
A square matrix A is called a upper triangular matrix if Aij = 0 for all i > j.
A square matrix A is called a lower triangular matrix if Aij = 0 for all i < j.
三角形矩陣可逆判斷條件
A triangular matrix is invertible if and only if its diagonal entry are all nonzeros.與對角線矩陣可逆判斷的條件相同。
Symmetric(對稱矩陣)
Def:
A square matrix A is said to be symmetric if A = A^T (Aij = Aji for all i,j)
轉置矩陣等於自身的方陣稱謂對稱矩陣。
對稱矩陣一些性質
if A and B are symmetric matrices of the same size and k is a scalar, then
<a>A^T is symmetric <b>A+B and A-B are symmetric <c>kA is symmetric
注意:A,B兩方陣分別對稱但矩陣(A·B)不一定對稱
(A·B)^T = B^T · A^T = BA ≠ AB
兩對稱矩陣的乘積矩陣仍對稱的條件
The product of two symmetric matrices is symmetric if and only if the matrices are commutative.
只有在兩方陣可以交換的條件下,其乘積矩陣才對稱。
可逆對稱矩陣的逆矩陣對稱。
If A is an invertible and symmetric matrix, then A^-1 is symmetric.
Proof:
(A-1)T = (AT)-1 = A^-1
證明思路:套用對稱矩陣的定義(轉置矩陣為本身的方陣)證明
用普通矩陣構造出對稱矩陣的方法
let A be a matrix(need not square), then A · A^T and A^T · A is symmetric.
proof:
(A·AT)T = (AT)T · A^T = A · A^T and (A^T · A)^T = A^T · (AT)T = A^T · A
證明思路:套用對稱矩陣的定義(轉置矩陣為本身的方陣)證明